1. If the statement is always true, circle TRUE. Otherwise, circle FALSE. Justify your answer.

a) Suppose $A = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ and $A \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Must v_1, v_2, v_3 be linearly dependent? If yes, write a linear dependence relation for the vectors. **YES NO**

b) If b is in Col(A), then so is 5b. **TRUE FALSE**

c) In the following, *A* is an $m \times n$ matrix.

(1) **TRUE** FALSE If *A* has linearly dependent columns, then m < n.

- (2) **TRUE** FALSE If *A* has linearly independent columns, then Ax = b must have at least one solution for each *b* in \mathbb{R}^m .
- (3) **TRUE** FALSE If *b* is a vector in \mathbf{R}^m and Ax = b has exactly one solution, then $m \ge n$.

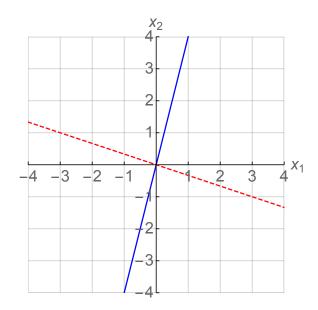
- 2. Circle TRUE if the statement is always true, and circle FALSE otherwise.
 a) If *A* is a 3 × 10 matrix with 2 pivots, then dim(Nul*A*) = 8 and rank(*A*) = 2. TRUE FALSE
 - **b)** If A is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the transformation T(x) = Ax must have \mathbb{R}^m as its range.

TRUE FALSE

c) If $\{a, b, c\}$ is a basis of a subspace V, then $\{a, a + b, b + c\}$ is a basis of V as well.

TRUE FALSE

3. Write a matrix *A* so that Col(*A*) is the solid blue line and Nul(*A*) is the dotted red line drawn below.



4. Let $A = \begin{pmatrix} 1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2 \end{pmatrix}$, and let *T* be the matrix transformation associated to *A*, so T(x) = Ax.

a) What is the domain of *T*? What is the codomain of *T*? Give an example of a vector in the range of *T*.

b) The RREF of *A* is $\begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

(i) Write bases for Col(*A*) and Nul(*A*).

(ii) Is there a vector in the codomain of T which is not in the range of T? Justify your answer.